A Note on Symmetries of WDVV Equations

نویسندگان

  • Yu-Tung Chen
  • Ming-Hsien Tu
چکیده

We investigate symmetries of Witten-Dijkgraaf-E.Verlinde-H.Verlinde (WDVV) equations proposed by Dubrovin from bi-hamiltonian point of view. These symmetries can be viewed as canonical Miura transformations between genus-zero bi-hamiltonian systems of hydrodynamic type. In particular, we show that the moduli space of two-primary models under symmetries of WDVV can be characterized by the polytropic exponent h. Furthermore, we also discuss the transformation properties of free energy at genus-one level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite hierarchies of nonlocal symmetries for the oriented associativity equations

The associativity equations, also known as the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations [1, 2], and the related geometric structures, namely, the Frobenius manifolds [3, 4, 5, 6, 7, 8], have recently attracted considerable attention because of their manifold applications in physics and mathematics. More recently, the oriented associativity equations, a generalization of the WDVV equa...

متن کامل

Symmetries of WDVV equations

We say that a function F (τ) obeys WDVV equations, if for a given invertible symmetric matrix η and all τ ∈ T ⊂ R, the expressions c α β γ(τ) = η cλβγ(τ) = η∂λ∂β∂γF can be considered as structure constants of commutative associative algebra; the matrix ηαβ inverse to η αβ determines an invariant scalar product on this algebra. A function x(z, τ) obeying ∂α∂βx (z, τ) = zc ε α β∂εx (z, τ) is call...

متن کامل

Second order reductions of the WDVV Equations related to classical Lie algebras

We construct second order reductions of the generalized Witten-DijkgraafVerlinde-Verlinde system based on simple Lie algebras. We discuss to what extent some of the symmetries of the WDVV system are preserved by the reduction. MSC Subj. Class. 2000: 35C05, 81T60

متن کامل

A note on the relationship between rational and trigonometric solutions of the WDVV equations

Legendre transformations provide a natural symmetry on the space of solutions to the WDVV equations, and more specifically, between different Frobenius manifolds. In this paper a twisted Legendre transformation is constructed between solutions which define the corresponding dual Frobenius manifolds. As an application it is shown that certain trigonometric and rational solutions of the WDVV equa...

متن کامل

Infinite hierarchies of nonlocal symmetries of the Chen–Kontsevich–Schwarz type for the oriented associativity equations

We construct infinite hierarchies of nonlocal higher symmetries for the oriented associativity equations using solutions of associated vector and scalar spectral problems. The hierarchies in question generalize those constructed by Chen, Kontsevich and Schwarz [40] for the WDVV equations. As a byproduct, we obtain a Darboux-type transformation and a (conditional) Bäcklund transformation for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008